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The simplest problem of flow of a gas mixture between parallel plates or in a 
circular pipe is solved, using a new method developed by the author in [l], of 

solving a system of kinetic equations and reducing them to a system of hydrody- 

namic equations.A generalized Poiseuille’s law is obtained for a flow of a binary 
gas mixture, and this enables us to reach a number of practically important con- 

clusions. 

Let us consider a steady motion of a binary gas mixture along the x-axis, between two 

planes separated from the coordinate origin by the distance of y = & h. ln this case 
the system of hydrodynamic equations for a gas mixture can be written in the Navier- 

Stokes approximation [l] in the form 

-$ + ;(u$ - Ul) = $g_ (1) 

where u1 and us are the mean velocities of each component, L),s is the binary diffusion 
coefficient. The boundary conditions are u1 (-& h) = u2 (&- h) = 0. From (1) we 
readily obtain 

P.1 (2) 

Integrating this expression and using the boundary conditions, we obtain the following 
expressions for the mean velocity : 

It is clear that the mean velocity (and for the gas mixtures with equal kinematic vis- 

cosities this means the normal mass-averaged velocity), can be determined from the 
classical formula for the plane Poiseuille flow. Thus in the present case the meanvelo- 
city distribution in the gas mixture follows the usual Poiseuille law. 

The motion and the velocity distribution of the separate components however, are sub- 
ject to different laws which can be established by solving the system (1). With this pur- 
pose in mind, let us differentiate e.g. the first equation of (1) twice with respect to Y - 
This yields #IL1 

$$Q-$(+- &J2 1 
:- 0 

Using (2) we eliminate the derivative d2u&dy2 to obtain the following equations for 

U,: 
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The boundary conditions can be written in the form 

d%] 
ul(th)=o, dyz :Ilfh=$g$- ( 1 

in which case we obtain the following expression for the velocity u, : 

(3) 

In an entirely analogous manner we obtain the expression for .%a co~s~nding to (3) 

with the indices 1 and 2 interchanged. Clearly, f&o1 4- pzwz = 0 , therefore an ex- 
pression for ~.+follows naturally from the expressions for z&i and ~a. Since ps are posi- 

tive, o, and O, have opposite signs. 
From the expressions for u1 and ~a it is clear that in a binary gas mixture the velocity 

distribution of each component assumes the form of a sum or a difference of two distinct 
distributions, namely, of the mean parabolic distribution, and a more complex distribution 
described in terms of a hyperbolic cosine, 

The expressions for ui and us can be used to calculate the rate of gas flow through the 
channel cross section i;h 

QS= \ r;,dy=+[ ’ 
. EL1 i- IL2 

.-$-&(k,,h-thk&)j 
-h 

When k,h are small, we obtain 
2 h3 aps 

-.--.---I_ 
Qs = - 3 pr 2s 

We can see that in this case the rate of flow of each gas component is determined by its 

partial pressure and the coefficient of viscosity, and the behavior of each gas component 
is independent of each other, However, when k& are large,the amount and the velocity 

distribution of each component will not differ appreciably from the values corresponding 
to the classical Poiseuille’s law of flow in a channel Thus the character of the flow of 
a binary mixture in a channel depends on the parameter k,h. 

Let us now consider a motion of a binary gas mixture through a circular pipe of radius 
&a, the axis of which coincides with the x-axis. In this case we have I?~ = o (r), 
2’, = v’o=o, and the corres~nding system of equations [l] can be written in the form 

1 a 1 aP1 --- 
r 

irr r~+-+“‘)‘--- (4) 

from which we readil; obtain 

PI (5) 

Integrating twice with respect to r and utilizing the no-slip conditionsat the wall when 
r = HO, we obtain the following mean velocity: 

We see that a certain mean velocity (for the gases with the same kinematic viscosity 
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this is the usual mass-averaged velocity) can be found using the classical Poiseuille’s 
formula. To find the velocity distribution for each individual gas component, we must 

solve the system (4) using the no-slip condition at the wall and the restriction in the 
range of velocities attainable inside the pipe. Differentiating the first equation of (4) 

twice and performing certain simple manipulations, we obtain 

d d 1 d dvl d 
u’rr-r--$-r--- 

dr dr PI 

E~rn~na~ng 2‘s with the help of (5) we obtain 

1 d d aP 1 ‘d dv1 
-I_ 

r dr 
r-$--ko22== 

---, 

p1trp2 ax Z==T--&-7-7 (7) 

where 4” is given by (3). The general, zero-bounded solution of (7). has the form 

where (10 (5) is the Bessel function. 
The first equation of (4) shows that at the pipe wall 

1 alJ1 

&L-R0 = - - 
111 ax 

This condition enables us to determine the arbitrary constant, and we obtain 

Multiplying this expression by r , inte~ating with respect to I” from zero to I’, multi- 

plying the result by I/r and again integrating with respect to I from r to R,, we 

finally obtain 9 
Vl 7 

_qp 

4@1t_Irz) ax 

_ &a) 3 2% ~~(~~~~~~~. 
(81 

Repeating the above procedure for the second equation of (4) we obtain the expression 
for V, corresponding to (8) with the indices 1 and 2 interchanged. 

From this we see that the velocity distributions for the separate gas components are 
determined by a law which is more complex than the Poiseuille’s parabolic law. How- 
ever, it can easily be shown that the mean velocity will still be determined by the para- 

bolic law (6), Calculating the rate of gas flow through the cross section of the pipe, we 

obtain J-CRC+ 
0, = -7 

I 
1 W + pz 

(9) 

For small k&2, the expression (9) becomes the Poiseuilte’s formula, containing however 
the partial viscosity and pressure gradient relating to the given component of the gas 
mixture ZRd 

QsS -&$ 
s 

When k,R, > 1 , we obtain an expression for the rate of gas flow identical to the clas- 

sical Poiseuille ‘s formula 
oS = _ nRo” aP 

3 (&-I. pzf -s- 

and this expression is an exact corollary of (6). 

From the expressions (3) and (8) we see that the gas flow velocities consist of two 

terms, a certain mean velocity which is the same for all gas components, and a supple- 
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mentary velocity which has different signs for different components and averages to zero. 
lt is therefore clear that the supplementary velocities are related to the flow diffusion 

rates and are 

for the flows between parallel plates, and 

0s 
[ 

lo (knr) _ 1 
w = ko2 fo(kuXo) 1 

for the flows in circular pipes. 
The above velocities result from the longitudinal pressure gradients and satisfy the 

no-slip conditions at the pipe wall. The expressions given in @] for the diffusion velo- 

cities are approximate, and can not generally satisfy the no-slip conditions. 

From the expressions (8) and (9) for the circular pipe it is evident that the character 
of the flow will significantly depend on the dimensionless parameter k&s. The magni- 

tude of this parameter can be expressed in terms of the flow parameters, in the following 
manner: 

k,2 - %m @l-k I.4 kT 

n1+ e2 PW DlZ 

For the molecules which .interact according to the laws governing elastic spheres, the 

coefficient of binary diffusion Lf,, can be written in the form 

Simple manip~atio~ then yield the following approximate expression : 

Fig. 1 

(w0)2 = it w/w (2Ro)R 

( i -k y a2 ) r/ 1 + m2lml hah12 

We see that the parameter k,R, is inversely pro- 
portional to the free path length, i. e. to the Knud- 

sen number. For this reason we have, in general, 
k,R, > 1 and the flow of a gas mixture will de- 
viate little from the flow of a homogeneous gas. 

The difference will however be substantial when 
the values of the parameter become small, Figure 1 
depicts the distribution of the relative velocities 
along the pipe radius in a binary gaseous mixture, 
for various values of the parameter k,R, (the con- 

ventional Poiseuille’s law corresponds to the values 

k,R > 1 ). It was assumed that the partial pres- 
sure gradient was zero for one component and non- 
zero for the other component. It is evident that the 

component velocity distributions differ substantially 
from each other over a wide range of the parameter 
values. When k,R, = ‘i, the velocities differ 
from each other by an order of magnitude, 

The results obtained lead to a number of novel 
relationships and bring to light some interesting 
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phenomena. For example, a gas moving under the action of partial pressure brings into 
motion a gas at rest which has no partial pressure, This is the case of a molecular ejec- 
tor. The effectiveness of the performance of a molecular ejector can be determined 
using the theory expounded above. In a number of cases a gas can be set into motion 

which opposes its pressure gradient. 
The theory developed here and the phenomena discovered play a major part in a num- 

ber of practically important problems, and in particular in the problems of separating the 

gas and liquid mixtures by means of porous and semipermeable membranes, 
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A condition governing crack growth in a piezoelectric material is formulated, 
and the problem of tunnel crack development on the boundary between a piezo- 
electric ceramic and an elastic isotropic conductor is considered as an illustra- 
tion The stress components, displacements, electric field potential, displacement 
of the electric induction, and the ma~i~de of the critical load associated with 

crack growth are determined. 

1, Fracture condition for pisroalactrlc msdis. The mechanical 
stress tensor components o ij in the static loading of a piezoelecaic medium are func- 
tions of not only the geometric deformations but also of the electrical field. 

Let us select the electrical field and the strain tensor components as independent vari- 

ables, and let us represent the equation of the piezoelectric medium in crystal physics 
Cartesian 2, y, z coordinates as follows [l]: 

E 
qj = CijklEkl - +@h, Di I= eXliEtil + EikSEt (i, j, it, E = 1,2, 3) (1.1) 

Here C& are the elastic moduli of the medium. eijk are the piezoelectric mod& v 
8 

~ik are adiabatic dielectric constants of the medium, ckl are strain tensor compon- 

ents, oij are stress tensor components, El, are electrical field strength components, and 

Di are the vector components of the electrical induction. 
Neglecting volume forces and the Maxwell equations in the absence of free charges, 

the equilibrium equations of the medium are : 


